
Only few synthesis have been reported for the 1-aza-4-oxa-
7-thiobicyclo[3.3.0]octane system, such as for 1 [1] and 2
[2]. These heterocycles constitute an interesting type of ami-
no acetal:
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Abstract. A convenient method for the synthesis of the title
compounds 4a,b, 3a,b via an intramolecular condensation of
thiourethanes, derived from the acylation of enantioenriched
α-thio benzyllithium compounds, is reported. The structure

of one of the major diastereomers was elucidated by a single-
crystal X-ray analysis and compared to semiempirical calcu-
lations.

1) X-ray crystal structure analysis

During our studies on acylation reactions of the highly enan-
tioenriched, configurationally stable S-lithiobenzyl thiocar-
bamate 6, [3] we unintentionally noticed a surprisingly facile
method for the formation of the corresponding 8-oxo deriva-
tives 3 and 4 (Scheme 1).

The ketones (R)-7 are stereospecifically formed from the
(S)-lithio derivative (S)-6 with complete stereoinversion on
reaction with acid chlorides. When these were treated with
small amounts of acidic catalysts under the usual conditions
of deblocking, [3] the bicyclic compounds 3/4 were obtained
instead of the expected N-(β-hydroxyalkyl)thiourethanes 8.
Besides the major diastereomers 3a and 3b, small amounts of
a second diastereomer (4a and 4b, respectively) were detect-
ed. The major diastereomer of the methyl-substituted deriva-
tive 3a formed suitable single crystals for an X-ray crystal
structure analysis, which confirms its (5R,6R)-configuration
[4] (Figure 1).
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Fig. 1 X-ray crystal structure of 3a [4]

Fig. 2 PM3-calculated structures for 3a (∆ fH = 
– 47.33 kcal.mol–1) and 4a (∆fH = –45.88 kcal.mol–1)
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The observed diastereomeric ratios of 88:12 to 94:6, ac-
cording to ∆∆G = 1.2 to 1.6 kcal.mol–1, are in good agreement
with the difference of 1.4 kcal.mol–1, estimated by semi-em-
pirical calculations [5]. The structures of 3a and 4a, which
are the calculated energy minima, are given in Figure 2.

The tendency for the formation of these heterocycles 3/4
and their stability is high. Even in the presence of an excess
of 1,2-ethanedithiol or 1,3-propanedithiol and boron trifluo-
ride etherate, the bicyclic compounds 3a and 3b are formed
with high yields.

Scheme 1 shows the complete reaction path including the
β-hydroxy thiourethane 8, which is supposed to be an inter-
mediate of the cyclization process. We applied the acidic cy-
clization conditions to the independently synthesized [3] ethyl
substituted derivative 8b. This open-chain compound direct-
ly fuses to the bicycle 3b/4b and therefore gives an addition-
al indication for the proposed reaction path (Scheme 1).

Organisch-Chemischen Institutes der Universität Münster
performed the elementary analyses on a Heraeus CHN–O-
Rapid Elementaranalysator. All yields are given referring to
neat products, purified by flash column chromatography [6]
on silica gel (Merck, 60–200 mesh). Solvents and reagents
were distilled and, if necessary, dried prior to use. Et2O and
CH2Cl2 were freshly distilled from Na/benzophenone and
CaH2, respectively. Isomer ratios of diastereomeric mixtures
were derived from suitable 1H NMR or GC integrals (Hewlett
Packard HP 5890 II chromatograph with a 25 m HP 1 col-
umn or Hewlett Packard HP 6890 II chromatograph with a
25 m HP 1701 column). Values belonging to the minor dia-
stereomer are given in curled brackets {}. All numbers in the
spectroscopic data follow Scheme 1.

The ketone (7a) and the β-hydroxy thiourethane (8b) were
synthesized as described in ref. [3].

Scheme 1Preparation of the Title Compounds 3 and 4 a) see ref. [3]; b) 1,3-propanedithiol, Amberlyst 15, CH2Cl2, 8 d at r.t.,
99%; c) Et2O

.BF3, Et2O, 5 d at r.t., 87%.
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Experimental

General methods
1H and 13C NMR spectra were recorded on a Bruker ARX
300 instrument at 300 MHz and 75.5 MHz, respectively.
Chemical shifts are reported in ppm in relation to Me4Si as
internal standard. IR spectra were registered on a Perkin–El-
mer 298 spectrometer; only the strongest bands are given. Op-
tical rotations were obtained with a Perkin–Elmer 241 pola-
rimeter and are specified in the unit degree.mL.dm–1.g–1.
Melting points were measured on a Mettler FP 61 apparatus
and are uncorrected. The Mikroanalytische Abteilung des

(5R,6R)- and (5S,6R)-2,2,5,6-Tetramethyl-6-phenyl-1-aza-
4-oxa-7-thiabicyclo[3.3.0]octan-8-one (3a and 4a) [7]

The ketone (R)-7a (125 mg, 0.37 mmol, er > 99:1) and 1,3-
propanedithiol (0.10 mL, 0.11 g, 1.0 mmol) were diluted in
the suspension of the cationic ion exchanger Amberlyst 15
(34 mg) in anhydrous CH2Cl2 (2.0 mL). The reaction mix-
ture was stirred for 8 d at 19 °C and the solvent was evaporat-
ed in vacuo. The residue was purified by flash chromatogra-
phy on silica gel (Et2O/hexanes, 1:4) and afforded 3a/4a
(102 mg, 0.37 mmol) as a colourless solid with 99% yield.
The diastereomeric ratio of 88:12 was determined via GC
(HP 1 and HP 1701).

3a/{4a}

=20][ Dα  –53.1 (c = 1.06 in CH2Cl2, dr = 88:12, er ≥ 99:1 at C-
6 in the starting material); RF = 0.58 (E/P, 1:1); RF = 0.39 (E/
P, 1:2); RF = 0.28 (E/P, 1:4); tR = 18.4 min {17.7 min}; ∆tR =
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0.72 min (HP 1); tR = 23.7 min {22.6 min}; ∆tR = 1.12 min
(HP 1701); m.p. 94–96 °C. – 1H NMR (300 MHz, CDCl3):
δ/ppm = 1.34 {1.31} (s, 3H, 5-CH3); 1.50, 1.65 {1.59, 1.83}
(s, 6H, 2-CH3); 1.94 {1.89} (s, 3H, 6-CH3); 4.21 (d, 1H, 3-Ha);
4.24 (d, 1H, 3-Hb); 7.26–7.35 (m, 5H, Ph-H);
2J3Ha, 3Hb = 14.7 Hz. – 13C NMR (75 MHz, CDCl3):
δ/ppm = 21.7, 23.9, 26.6, 29.7 {22.3, 22.9, 23.1, 30.1} (q, 6-
CH3, 5-CH3, 2-CH3); 59.0 {60.4} (s, C-6); 66.6 (s, C-2); 84.1
{82.0} (t, C-3); 104.2 {104.2} (s, C-5); 127.4, 128.9 {127.4,
129.3} (d, Ph: o-C, m-C); 128.0 {127.9} (d, Ph: p-C); 140.1
(s, Ph: i-C); 163.7 (s, C-8). – GC-MS (CI, NH3): m/z (%) = 295
(82 {82}, [M+NH4]

Ò); 278 (100 {100}, [M+H]Ò); 277 (10
{10}, M Ò); 136 (6 {6}, [C8H8S]Ò). – GC-MS (EI, 70 eV):
m/z (%) = 277 (100 {56}, MÒ); 202 (0 {5}, [M–CH3–COS]Ò);
141 (22 {22}, [Cby-CH3]

Ò); 136 (94 {100}, [C8H8S]Ò); 121
(36 {62}, [C8H8S–CH3]

Ò); 114 (34 {42}, [Cby-CH3–C2H3]
Ò);

113 (18 {32}, [Cby-CH3–CO]Ò); 98 (34 {62}, [C5H8NO]Ò =
[Cby-C3H6O]Ò). – IR (KBr): ννννν∼∼∼∼∼/cm–1 = 1690 (C=O), 1680
(C=O).
C15H19NO2S Calcd.: C 64.95 H 6.90 N 5.05
(277.39) Found: C 64.94 H 6.88 N 5.10.

Stirring of rac-7a for 17 d at 20 °C yielded 3a/4a with 85%
yield and a diastereomeric ratio of 91:9 (m.p.: 87–89 °C).

(5R,6R)- and (5S,6R)-5-Ethyl-2,2,6-trimethyl-6-phenyl-1-
aza-4-oxa-7-thiabicyclo[3.3.0]octan-8-one (3b and 4b)

Boron trifluoride etherate (0.10 mL, 0.11 g, 0.78 mmol) was
injected to a solution of the β-hydroxy thiourethane (R)-8b
(66 mg, 0.21 mmol, er > 98: 2) in anhydrous Et2O (2.0 mL).
At 21 °C the reaction mixture was stirred for 5 d and poured
into a mixture of Et2O (5 mL) and NaOH (2 M, 5 mL). The
organic layer was separated and the aqueous solution extract-
ed with Et2O (3*10 mL). The combined organic layers were
dried over solid Mg2SO4. Evaporation of the solvent and flash
chromatography of the crude product on silica gel (Et2O/hex-
anes, 1:1) yielded the colourless solid 3b/{4b}  (54 mg,
0.19 mmol, 87%). The diastereomeric ratio 3b:4b = 90:10
was determined by GC (HP 1). The enantiomeric ratio of
(R) : (S) > 98: 2 concerning C-6 results from the starting ma-
terial (R)-7a.

3b/{4b}

=21][ Dα  –67.7 (c = 0.24 in CH2Cl2, dr = 90:10, er > 98:2 at
C-6 in the starting material); RF = 0.66 (E/P, 1:1); tR =
19.1 min {18.6 min}; ∆tR = 0.51 min (HP 1). – 1H NMR (300
MHz, CDCl3): δ/ppm = 0.66 (dd, 3H, 5-CH2–CH3); 1.50, 1.67
(s, 6H, 2-CH3); 1.74–1.94 (m, 2H, 5-CH2–CH3); 1.96 (s, 3H,
6-CH3); 4.17 (d, 1H, 3-Ha); 4.25 (d, 1H, 3-Hb); 7.14–7.41
(m, 5H, Ph-H); 3J5-CHa-CH3, 5-CHa-CH3 = 7.4 Hz; 3J5-CHb-CH3,

5-CHb-CH3 =  7.7 Hz; 2J3-Ha, 3-Hb = 8.7 Hz. – 13C NMR (75 MHz,
CDCl3): δ/ppm = 9.4 {8.8} (q, 5-CH2–CH3); 26.2, 26.3 {22.5,
22.8} (q, 2-CH3); 28.7 {34.0} (t, 5-CH2–CH3); 30.4 {32.2}
(q, 6-CH3); 58.6 {59.4} (s, C-6); 65.9 {66.1} (s, C-2); 84.0
{81.9} (t, C-3); 105.6 (s, C-5); 127.3, 128.3 {127.0, 128.7}
(d, Ph: o-C, m-C); 127.5 {127.7} (d, Ph: p-C); 139.6 (s, Ph:
i-C); 164.7 (s, C-8). – IR (film): ν∼∼∼∼∼/cm–1 = 1695 (C=O), 1665
(C=O). – GC-MS (EI, 70 eV): m/z (%) = 291 (52 {24}, MÒ);
262 (4 {2}, [M–C2H5]

Ò); 202 (20 {8}, [M–C2H5–COS]Ò); 155
(24 {20}, [M–C8H8S]Ò); 136 (100 {100}, [C8H8S]Ò); 127 (44

{32}, [M–C 8H8SCO]Ò); 121 (54 {48}, [C8H8S–CH3]
Ò); 112

(70 {76}, [M–C8H8SCO–CH3]
Ò); 103 (20 {22}, [C8H7]

Ò); 77
(10 {16}, [C6H5]

Ò); 56 (12 {21}, [C4H8]
Ò). – MS (EI, 70 eV):

m/z (%) = 291 (52, MÒ); 262 (4, [M–C2H5]
Ò); 202 (15, [M–

C2H5–COS]Ò; 155 (23, [M–C8H8S]Ò); 136 (100, [C8H8S]Ò);
127 (54, [M–C8H8SCO]Ò); 121 (78, [C8H8S–CH3]

Ò); 112 (92,
[M–C8H8SCO–CH3]

Ò); 103 (36, [C8H7]
Ò); 77 (24, [C6H5]

Ò);
56 (36, [C4H8]

Ò). HR-MS (EI, 70 eV) calcd. for C16H21NO2S
[MÒ] 291.1293, found 291.1294.
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0.40 mmol), Amberlyst 15 (40 mg) and CH3OH (0.5 mL)
were heated for 34 h to 100 °C in a pressure-proof vessel.
After the solvent had been evaporated in vacuo, the residue
was purified by flash chromatography 3a/4a (89 mg,
0.32 mmol) were isolated with 81% yield and a diastereo-
meric ratio of 89:11 (GC: HP 1; m.p. 89– 90 °C).
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